Solves the constrained lasso problem using the CLASSO module in Python. The optimization problem is

sparse_log_contrast(
  Z,
  y,
  C = NULL,
  fraclist = NULL,
  nlam = 20,
  min_frac = 1e-04
)

Arguments

Z

n by p matrix containing log(X)

y

n vector (response)

C

m by p matrix. Default is a row vector of ones.

fraclist

(optional) vector of tuning parameter multipliers. Should be in (0, 1].

nlam

number of tuning parameters (ignored if fraclist non-NULL)

min_frac

smallest value of tuning parameter multiplier (ignored if fraclist non-NULL)

Details

minimize_beta, beta0 1/(2n) || y - beta0 1_n - Zagg_clr beta ||^2 + lamda_max * frac || beta ||_1 subject to C beta = 0

Default is C = 1_p^T, but C can be a general matrix.

Observe that the tuning parameter is specified through "frac", the fraction of lamda_max (which is the smallest value for which beta is nonzero).